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Abstract

The Celtic Seas ecoregion (CSE) is undergoing climatic and ecosystem changes, which can induce changes in fish productivity. Globally,
the productivity of many stocks has shown evidence of change over decadal timescales. Varying factors might drive these dynamics
in the CSE, but for many stocks, these mechanisms have not been fully understood to be included in management advice. We study
dynamic productivity for 28 stocks in the Celtic Seas by tracking integrated stochastic signals in the relationship between stock size
and recruitment using state-space modelling applying Peterman’s Productivity Method. Our research objectives were to (i) fit Ricker
stock-recruitment models with time-varying parameters to all age- or length-based assessed stocks in the CSE, (ii) evaluate which
parameters vary in time, (iii) examine temporal characteristics of historical recruitment productivity, and (iv) evaluate productivity
correlation across stocks. For 22 out of 28 stocks, at least one of the three time-varying parameter models had a better fit than the time-
invariant model. In the CSE, fish productivity has diverse temporal patterns, with some stocks displaying relevant long-term decreasing
productivity trends. Getting insight into temporal changes in recruitment productivity is very valuable and has important implications

for sustainable fisheries.
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Introduction

The ICES Celtic Seas ecoregion (CSE) covers a major part of
the northwestern European continental shelf. This ecoregion
also includes areas of the deeper eastern Atlantic Ocean as
well as coastal waters that are heavily influenced by oceanic
inputs (ICES, 2021a). Previous studies in the area suggest that
marine communities respond to the combined effect of fish-
eries and climate (Lynam et al.,2010). Environmental changes,
such as changes in the North Atlantic Oscillation, can produce
temporal changes in oceanographic conditions, which, in turn,
can cause ecological responses such as changes in the repro-
duction timing, abundance, growth, spatial distribution, mor-
tality, and inter-specific relationships (Ottersen et al., 2001).
Climate change and extreme events could potentially cause
important changes in the ecoregion (Richardson and Schoe-
man, 2004; Drinkwater et al., 2010). While broad environ-
mental variability and trends are evident, the mechanisms af-
fecting the ecosystem and the populations are complex (Sug-
ihara et al., 2012; Fogarty et al., 2016). Thus, although it
is known that environmental drivers affect recruitment (e.g.
Kristiansen et al., 2011), these relationships are not fully un-
derstood and tend to be unstable over time (Myers, 1998; Stige
et al., 2006; Ottersen et al., 2013).

Recruitment productivity is vital for the renewal of the
population. In stock assessments, understanding the relation-
ship between recruits and spawner biomass is key for the
sustainable management of fisheries but notoriously variable

and traditionally difficult to understand (Hilborn and Wal-
ters, 1992; Myers, 1994). The stock—recruitment relationship,
used to estimate maximum sustainable yield fishing mortal-
ity and biomass reference points, is typically modelled as a
stationary process where the parameters are fixed based on
historically constant estimates (time-invariant; Collie et al.,
2012, 2021; Silvar-Viladomiu et al., 2022). However, popu-
lation dynamics processes, on top of operating over different
density ranges, may operate at different times (Zeng et al.,
1998). Globally many stocks’ productivity has shown evi-
dence of non-stationarity (Vert-pre et al.,2013) and displayed
evidence of temporal variation in parameters of the stock—
recruitment relationship (Peterman et al., 2003; Dorner et al.,
2008; Minto et al., 2014; Britten et al., 2016; Tableau et al.,
2019). Temporal changes in productivity have important im-
plications for reference points (Kell et al., 2016; Clausen et al.,
2018; Holt and Michielsens, 2020; Zhang et al., 2021; Silvar-
Viladomiu et al., 2022), upon which fishing opportunities ad-
vice is based. Stock-recruitment models with time-varying
parameters developed by Peterman and colleagues [Peter-
man’s productivity method (PPM); Peterman et al., 2000;
Silvar-Viladomiu et al., 2022] can track integrated under-
lying signals of change in productivity and identify trends
(Peterman et al., 2003).

For sustainable management of the CSE stocks, it is criti-
cally important that temporal trends in recruitment productiv-
ity are detected in a timely and reliable manner (Dorner et al.,
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2008). Understanding the temporal dynamics of recruitment
is crucial as recruitment determines future productivity for
long-lived stocks, mediated by natural mortality, and prox-
imal productivity for short-lived recruitment-driven stocks.
This understanding also contributes to identifying long-term
trends and abrupt changes such as regime shifts (Perali ez al.,
2020). To better understand how -rather than why- recruit-
ment productivity has varied over decadal timescales, we ap-
plied PPM and extracted filtered and smoothed time series
patterns for multiple species and stocks in the CSE. Our ob-
jectives were to (i) fit stock—recruitment models with different
time-varying parameter configurations, (ii) evaluate which pa-
rameters vary in time, (iii) examine temporal characteristics of
historical recruitment productivity, and (iv) evaluate produc-
tivity correlation across stocks.

Material and methods

Recruitment and spawning stock biomass estimates

We used the time series of spawning stock biomass (SSB) and
recruitment (R) estimates from the most recent stock assess-
ments issued by the International Council for the Exploration
of the Sea (ICES). For stocks residing at least partially in the
CSE, we extracted the data via XML from the ICES Stock As-
sessment Graphs database (ICES, 2022). From that list, the
stocks her.27.1-24a514a (Norwegian spring-spawning her-
ring) and lin.27.5b (Faroe grounds ling) were excluded from
the analysis because the boundaries of the stock showed only
a minor overlap with the CSE. We filtered for assessments
that estimated spawning stock biomass and used “SSB” in
the stock size description. Twenty-nine stocks were selected,
most of which were category 1 (i.e. stocks with quantitative
assessments), except for cod.27.7a and her.27.6a7bc, which
at the time of data extraction were category 3 (i.e. stocks for
which survey-based assessments or exploratory assessments
indicate trends). However, we used data from the 2018 as-
sessment, when the stocks were considered category 1, so a
full analytical stock assessment was carried out. One stock
with a short time series (<20 years) was excluded from the
analysis (bli.27.5b67, blue ling in the Celtic Seas and Faroes
grounds). Assessment methodologies were typically age- or
length-structured (Table 1). While some assessments contain
a stock-recruitment model to develop initial estimates of re-
cruitment, if recruitment deviations are included, the annual
recruitment estimates are informed by the available length
and age data. Most of the assessments in this study did
not assume a stock-recruitment relationship and included a
large standard deviation (Supplementary Table S1). Stock as-
sessments in this study that use extended survivors analysis
(XSA), Gadget, and a4a models do not assume any stock—
recruitment relationship. Assessments that use state-space as-
sessment model (SAM) here assume no stock-recruit relation-
ship and parameterized logarithm of recruitment with a ran-
dom walk with high process variation, effectively estimating
log recruitment as a free parameter. Some assessments that
use age-structured assessment program (ASAP) in this study
do not assume a stock—recruitment relationship (had.27.7a,
her.27.irls, her.27.irls); the other ASAP assessment (cod.27.7a)
assumes a Beverton—-Holt stock—recruitment relationship with
an annual recruitment CV of 0.5 that allows largely uncon-
strained variation in recruitment. The SS3 assessments in this
study, assume a Beverton—-Holt stock-recruitment relation-
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ship with fixed steepness, equal to 0.9 and included recruit-
ment variation big enough to give flexibility to the model to
estimate recruitment deviations adequately for this stock, and
steepness was estimated for hke.27.3a46-8abd. The spurdog
assessments included a recruitment variability parameter of
0.2 (De Oliveira et al., 2013). This lower deviation might con-
strain the magnitude of the time variation, but the patterns
should remain similar. Stocks were classified using metadata
from the assessment by region (northern CSE, central CSE,
southern CSE, and northeast Atlantic wide area). The North-
east Atlantic wide area classifies stocks that cover a wide part
of the Northeast Atlantic.

Model details

We applied PPM, which is a state-space dynamic model for
estimating time-varying parameters of the stock-recruitment
relationship (see Silvar-Viladomiu et al., 2022). We focused
on the univariate (single-population) PPM to study the re-
cruitment productivity of CSE stocks. We described the stock—
recruitment relationship with the linearized version of the
Ricker model (Ricker, 1954), which depends on two parame-
ters: a maximum productivity and a density-dependent coeffi-
cient (Peterman et al., 2000). We use the natural logarithm of
the survival ratio R/S (also termed the “killing power”, My-
ers 2001). The linearized Ricker model follows the function
below:

ln( Rt ) =ﬂ+bSt7t+Ut
St

v, ~ N(0, 072), (1)

where R; is the recruitment in year ¢, S;_, is the spawning stock
biomass in time ¢ (lag by the age of recruitment t), a is the
maximum productivity, b is the density-dependent mortality,
and v, is an amalgam of process and observation errors.

We evaluated four different models as follows: (i) time-
invariant Ricker model, (ii) time-variant maximum produc-
tivity Ricker model, (iii) time-variant density-dependent mor-
tality Ricker model, and (iv) time-covariant maximum pro-
ductivity and density-dependent mortality Ricker model. We
fitted the models by maximization of the likelihood within the
DLM package (Petris et al., 2009) in the statistical software R.
To estimate time-varying parameters, the Kalman filter was
implemented.

First, we estimated the time-invariant linearized Ricker
model. This model is stationary in its parameters because
it assumes that the parameters are constant across the en-
tire time series of spawner and recruit data (Equation 1).
The maximum-productivity coefficient (a) is the natural log-
arithm of « in the traditional Ricker formulation, which is
the maximum reproductive rate and represents the product
of the fecundity and density-independent mortality integrated
over time from spawning to recruitment (Ricker, 1954). The
density-dependent mortality (b) gives the rate at which recruit-
ment is reduced by density-dependent mortality.

For the second model, we estimated the time-varying
maximum-productivity parameter. We allow the stochastic
parameter(s) to vary via a random-walk process:

R
ln(S ‘ )=at+bstff+ut, )
t—1

Z0Z Aenuer || uo Jasn Aleiqi [enued YVYON A L9v282./62€2/6/08/0Ie/swWlse0l/wod dno-olwspede//:sdny wouj papeojumoq


https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab146#supplementary-data

2331

Stochastic modelling of recruitment productivity

Downloaded from https://academic.oup.com/icesjms/article/80/9/2329/7282467 by NOAA Central Library user on 11 January 2024
‘[opour oy} Ut $3y21ed Suisn a8k 1€ [dIed [EdNSHEIS UBISILeq
*s9x9s a1eredas yam [opow parnidonns-yasud| pue a3y,
*(werSo1d Juowssasse painionns-a8e) JySy pue ‘(sis{[eue
SIOATAINS PAPUIXD) YSX (€ SISAYIUAS Y2038) €§S ($24INd Yo3ed JB2A-1 W) DDA A ([PpOW Judwssasse 30eds-03e3s) VS :$9dA1 JUSWSSassy JUIUIINIOIT J& 93E 10J SPUBIS Y-18-93Y "dNUB[IY ISBIYIION] 10§ SPueIs YAN

snSup|iou ([puuey)n
4SD uIdyInog T VS 0 smSup4a]\  YsSI[Su] UI9ISEd PUB SBIG D[ UIYINOS) Y-9°/ PUB 2-q°/ SUOISIAIP UI SUBIYA\ )-90-q/" LT Sym
snSupjious
4SO [BRUD (44 dvsy 0 SmSuvlN (98 ys1I) ©°/ UOISIAIP UT FunyA v/ LT 8ym
snSuvjiou
HSD UIYIION 1¥ VS 0 smSuvjd N (PUB[309G JO 359/ ) B'9 UOISIAID Ul Uy €9 /7 Sym
nossvinod (s191EM
B2IB IpIM VHN ot VS 1 SMIISISou0421)\  JUddE[pE pUE JIUB[IY ISBIYIIOU 9Y3) ] PUe ‘7] ‘g-] seaieqns ur Suniym anjg PITI6-1° LT qym
4SD uIdyInog 0S VS 1 p2]0s pa]og (Bag on[a)) ‘[puuERy)) [03SLIg) 8°/ Pue J°/ SUOISIAIP UI 9[0S 8y/°/T’108
ASD uIdyInog 1$ VSX i p2]0s va]Og ([ouueyD) ysijSuyg UIaIsam) 9°/ UOISIAIP Ul 9[OS 3/°1T108
4SD [eUd) 0S VSX T p2]0s p2]Og (89§ YSLI]) B°/ UOISIAIP UI 3[0§ ®/ /7108
(pueuaain) Jo 3sey ‘$9I0ZY JO YITON] ‘pUB[IOIS JO
HSD UIYIION 9% 198pen) (S Sno132040U $215PQ2S 1S9\ ‘SPUNOIF $301e] PUB PUB[ID]) 4| PUE ‘T[ ‘9 ‘G SBIIBQNS UL YSYPIT UIP[OD) 17198 LT 321
(18118 pue Ye11adeys ‘pue[Iods
HSD UIIYIION s VS ¢ SU2410 SNIYIV]I0 JO 1S9\ PUE [[BD0Y ‘8IS YIION]) B'¢ UOISIAIP PUE ‘9 ‘4, SBaIRqNS Ul JYIIES 9peeLgjod
vssav)d
SO [eHU) ot INVS 1 mmﬁmxsxm\\k (®3G YSLI[) ©°/ UOISIAIP UI 3d1e[] e/ /7 9ld
(Leosig
ASD uIdyInog 9¢ epe 0 sn1i0gpsid snigdo jo Aeq ‘seag d13[2)) P'g PUE (-B'g SUOISIAID PUE / BIIBQNS Ul YSYIS[SUe 331y A\ pqesg. /g uowt
smodviffigm (&eosiq jo
4SO uIdyInog /€ q 1 snquiogioprdo]  Keq ‘pue[RI] JO 1SOMUINOS PUB 1S9M) P°g PUB ‘q-B°8 “Y-(°/ SUOISIAIP UI WLISIN pPqes-qL L7 Sow
(s1o3EM JUDE(pE
B2IB IpPIM VHN w VS 0 SMAQUIOIS 49QUI02§  PUEB DIIUE[IY ISEIYLIOU JY3) ' ¢ UOISIAIP PUE 4] PUB §-] SBIIB]NS Ul [9IYIBIN BOU /7 OBW
(onuepyy iseayliou S
BaIB IpPIM VHN ot €SS 0 SHANYIDA] SMANYIDA], ay3) Y-9-8°/ ‘@9 ‘q'¢ ‘B'f ‘' SUOISIAIP PUE § BIIBQNS UL [9IOBW ISIOH -90-8/B9(qGRYLRT LT WOY
SMI2INj4oUL (Aeosiqg Jo Aeq UIIYIIOU AYI PUE ‘SBIG D1I[3)) ‘BIG YIION] 19IBIID))
BaIE 9pIM VN b €SS 0 SMI2ONAI[N  D03S UIYIIOU ‘P8 pUE ‘q-B'g ‘B°C SUOISIAID PUE °/ PUE ‘9 4, SBaIRqNS Ul B Pqes-9peC L7 oY
4SO [BRUD A% VS ! snguaivy vadn|) (89S YSHI) NL,O€4TS JO YITON B°/ UOISIAIP U JuLiio ST LTy
(puepaa] JO 3s9MYyINos pue ‘edg
4SO uldyInog €9 dvsy 1 snSuaivy vadn|) 219D BdS YsHY) YL pue Y-8/ ‘N,0€.7S JO YINOS ©°/ SUOISIAIP UT SULLIDH] SHELTIY
4SO UIYLION 79 NVS 1 snduaivy vadn]) (pue[ai] JO 1S9\ pUE PUB[I0IS JO 1S3/ ) 9-q°/ PUB B9 SUOISIAIP Ul SULLIOH] 2q/e9° LT IY
snuifa|3av
SO uIdyInos 6T VS 0 §§§§momsw&§ (PuueyD ysySuy pue seag o[ UIAFNOS) 3-q’/ SUOISIAIP UI 300pPeH A-qL°LTPRY
snuifa|3ov
4SO [BRUD 67 dvsv 0 §§§E%ommwm§ (9 Ys1]) &°/ UOISIAIP Ul Yo0ppeH ELLTPRY
snuifa|Sov
4SO UIYHON 0€ VSX 1 SHUUPLSOUD[oN (ITe3j20Y) q°9 UOISIAIP Ul o0ppeH q9°LTPeY
snuifajSov (dye11a8eyS ‘puer0dg
HSD UIIYLION 0s VS 0 SNUUPISOUD]IIN JO 183/ “BIG YIION]) ()7 UOISIAIPGNS PUE ‘B'9 UOISIAIP ‘4, BIIBQNG Ul YOOPPEH 0Te9%° LT PRY
(s1o1EBM
B2IB IpPIM VHN 911 e 0 sorquvov snjpnbg JudadE(pe pue dIIUB[Y ISBAYIIOU IY) | pue 7 ‘O[—[ seateqng ul Sopindg Bau’/7°s3p
4SD uIdyInog 1% VS 1 pryLouL Snppr) (Seag d1[o) WIdYINOS puE [duuey) YsI[Suy UIISEd) )-9°/ SUOISIAIP Ul POD) N-94° LT PO
SO [enua) 1$ dVSV 0 pRgLOUL SNPYL) (B3G YSLI]) ©°/ UOISIAIp UI POD) ©/ /T PO
4SO UIYHON 0 VS 1 pngiouL snpro (PUE[303G JO 1S9/ ) B'9 UOISIAIP Ul PODy B9°LTPO?
xviqu] (Bag o1 pue ‘PuURY)) [0ISLI ‘[PuURY)) YsI[SU ‘Bdg ySLI]
ASD [eUd) L€ €SS 0 SHYIADAIUIIN(] 89§ Y1ION] UIOYINOS pPUk [BIIUD) Y-P°/ PUB ‘B°/ “D-('f, SUOISIAIP UI SSEqEIG Y-pe/oqy°LT7S8q
BATE IPIM VAN L1 DDA 6 v13(£421dAp vajon (Spunois so01e] pue sBdg d1I[9))) q'¢ UOISIAIP puk /—9 SBIIR(NS Ul SUI| an[q £99$° 27119
(puepioog
4SO UIYLION T VS S snjis punuasLy JO 1S9M puk spunoid saore) e'9 pue ¢ SUOISIAIP UI J[dWs 32_%“8_«8@ B9q¢ /7 nIe
uordoy y18u9] JUDWISSISS Y H-1e-98y Jwieu dYnudIdg uondrnsaq [Pqe] 49 }oo1g
SOLIDG

"pe1eBIISeAUl S3001S 35D 8Yl JO S|ieleQ ‘L d|qeL



2332

a = a1 + o
@ ~N(0,02), (3)

where w, is the process error. Allowing the parameters to vary
over time permits the separation of process variation in the
parameters from measurement error in survival (Minto et al.,
2014). We assumed a random-walk process for the system
equation because we had no a priori knowledge of temporal
patterns in the parameter. Besides, a random-walk model per-
formed well at tracking a wide variety of underlying temporal
trends (Peterman et al., 2000; Dorner et al., 2008; Minto et al.,
2014). The density-dependent parameter, b, in this model, is
time-invariant.

For the third model, we estimated time-varying density-
dependent mortality, following stochastic variation with a
random walk process:

In ( Rt ) =a-+ tht—T + vy, (4)
St—z
by = b1 + o
w; ~ N(0,07), (5)

where w; is the process error. The maximum-productivity pa-
rameter, 4, in this model, is time-invariant.

For the fourth model, we estimate time-varying maximum
productivity and density-dependent mortality by allowing
both parameters to covary, following a correlated random
walk:

In (SRt ) =a; + tht*T + vy, (6)
t—t

2
ar| ar—q 0, POL0}
R (TP |
where p is the correlation between the process deviations of a

and b.

Model comparison

To identify the best model for the given time series, we used
goodness-of-fit statistics. We evaluated the models based on
the model selection criterion Akaike information criterion
(AIC; Burnham and Anderson 2004). The AIC was calculated
using the analytical solution for the log-likelihood from the
Kalman filter algorithm including the number of variance pa-
rameters and the dimension of the state vector. The best-fitting
model was judged by the difference (8) between the AIC val-
ues of the models. The most parsimonious of the four model
fits was the model with the lowest AIC value. Models within
2 AIC units of the lowest were considered equally plausible
models. Models with the lowest AIC with a difference of equal
or more than 2 units were considered to have substantial sup-
port or evidence.

CSE productivity trends

We continue the analysis focusing on stocks displaying ev-
idence of time-varying parameters. To understand temporal
patterns in dynamic recruitment productivity, we plotted the
parameter time series of the model with the lowest AIC, e.g.
the estimated a4, time series from the time-variant maximum-
productivity model or the estimated b, time series from the
time-variant density-dependent mortality model. Additionally,
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we plotted the relationship between the time-invariant esti-
mate and the mean of the time-varying maximum produc-
tivity for the full-time series and the last 5 years of the time
series.

Correlation analysis between stock’s maximum productivity
patterns

We estimated the Spearman rank pairwise correlation between
stock-specific time-varying trends in productivity (for the
stock where the time-varying maximum productivity model
had a better fit). The estimated time series of a, values consti-
tuted our measure of productivity. We compared correlations
across stocks to quantify the extent to which similar patterns
in the a; parameter are shared among stocks. To cluster the
stocks that have similar patterns, we performed a hierarchical
cluster analysis on the pairwise correlations using hclust using
the “complete linkage” method in R.

Results

Results are divided into two sections. First, we compare
the goodness-of-fit of the time-invariant and the three time-
variant stock-recruitment models. For the second part, we
focus on the parameter temporal variation of the best-fitting
models and describe the trends and correlations between
stocks.

Model comparison and selection

For 22 out of 28 stocks, at least one of the three time-varying
parameter models had a better fit than the time-invariant
model (based on the difference between the two models’ AIC
values). The best-fitting model results were unchanged using
AICc (Burnham and Anderson, 2004), a method used to
address small sample sizes. For six stocks, the time-invariant
model had more support but equally plausible as the AIC
differences were small (§ < 2; Table 2), except for two stocks
(had.27.7a, hom.27.2a4a5b6a7a-ce-k8), which showed more
support for the time-invariant model (with § = 2).

We found strong evidence that 22 stocks had time-varying
parameters because time-invariant models had considerably
less support (with AIC § > 2; Table 2). Comparisons of
model fit showed that the model with time-varying maximum
productivity had the strongest support for 18 stocks, and the
model with time-varying density-dependent mortality had the
strongest support for four stocks. For six stocks both time-
varying parameter models were equally plausible because
they had similar AIC support (§ < 2; Table 2). For 14 stocks,
the time-varying maximum productivity had substantially
more support relative to the time-varying density-dependent
mortality (§ > 2; Table 2), and for two stocks time-varying
density-dependence mortality had substantially more support
relative to the time-varying maximum productivity (ple.27.7a,
pok.27.3a46; Table 2).

The models with both parameters covarying in time esti-
mated a high correlation between parameters for 60% of the
stocks (Supplementary Table S2). These models never showed
better AIC support because AIC penalized the use of a higher
number of parameters (Table 2). For most stocks, results of
the time-variant maximum-productivity model and the model
with both parameters covarying showed similar trends for the
a, parameter (Supplementary Figure S1). The fixed parameter
in the time-varying models often had scaling differences
from the time-invariant value (Supplementary Figures S1 and
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Figure 1. Estimated time series trends in maximum productivity (a¢) and 95% confidence intervals for stocks in the CSE, ordered by northern CSE,
central CSE, southern CSE, and northeast Atlantic (NEA) wide area. The horizontal dashed line is the time-invariant maximum productivity parameter.

Stock descriptions are provided in Table 1.

S2), typically being higher fixed maximum productivity in
the time-varying density-dependent model and lower fixed
density-dependent in the time-varying maximum productivity
model. When the best-fitting model was the time-invariant
one (Table 2), some stocks did not show temporal trends in the
parameters (e.g. had.27.7b-k and hom.27.2a4a5b6a7a-ce-k8;
Supplementary Figures S1 and S2).

CSE time-varying maximum productivity

The stocks examined exhibit various temporal trends and pat-
terns in the maximum-productivity parameter. The amplitudes
of the time-varying productivity (in logarithmic scale) vary
from <1 (e.g. Faroes grounds and West of Scotland greater
silver smelt, aru.27.5b6a) to around 5 (e.g. northeast At-
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Figure 2. Time-invariant estimates of maximum productivity (a) related to mean time-varying estimates of maximum productivity for (a) full-time series

and (b) the last 5 years. Stock descriptions are provided in Table 1.

lantic blue whiting, whb.27.1-91214) (Figure 1). This vari-
ability corresponds to the recruitment number per metric ton
of the spawning stock biomass on a logarithmic scale. The
longest series available was for the northeast Atlantic spur-
dog (1905-2020), in Figure 1, we truncated this time series
because for most species the time series were considerably
shorter.

For some stocks, the current productivity level was substan-
tially lower than at the beginning of the time series (e.g. West
of Scotland whiting, whg.27.6a), but for other stocks current
productivity was higher (e.g. Irish Sea herring, her.27.nirs)
than or similar to historical productivity (Figure 1). For most
stocks, estimates of time-invariant maximum productivity
were similar to or lower than the mean time-varying maxi-
mum productivity (Figure 2a). However, for some stocks, re-
cent time-varying maximum productivity was lower than the
time-invariant one (Figure 2b); for example, Irish Sea cod
(cod.27.7a) and West of Scotland and West of Ireland herring
(her.27.6a7bc).

With regard to northern CSE stocks, maximum produc-
tivity has declined considerably for many stocks (Figure 1),
e.g. West of Scotland whiting (whg.27.6a) and West of Scot-
land and West of Ireland herring (her.27.6a7bc). The North
Sea and West Scotland haddock (had.27.46a20) also dis-
played declining productivity until 2012 with productivity
increasing thereafter. West of Scotland whiting showed a
steep decrease until 2009 and stabilization since. West of
Scotland and West of Ireland herring displayed fluctuations
with an overall declining long-term trend. Productivity of
Faroes grounds and West of Scotland greater silver smelt
(aru.27.5b6a) declined until the early 2000s and increased af-
ter with a peak around 2009. Rockall haddock (had.27.6b)
fluctuated, with a lower productivity point around 2010
(Figure 1).

In the central CSE, stocks showed a diversity of patterns
(Figure 1). A decreasing trend was observed for Irish Sea
cod (cod.27.7a) for the entire time series. Irish Sea whiting
(whg.27.7a) had a low productivity level in the early 1990s,
productivity increased until the early 2000s and decreased
since 2013 to levels similar to those at the beginning of the
time series. Irish Sea sole (sol.27.7a) displayed decreasing pro-

ductivity but with some increase in recent years. Irish Sea her-
ring (her.27.nirs) productivity was fairly stable at a low level
for the start of the time series and in the late 1990s had a
marked increase with a fairly stable period at a higher level
since the mid-2000s.

Southern CSE stocks had higher levels of currently time-
varying productivity than the time-invariant one (Figure 1).
Celtic Sea cod (cod.27.7e-k) productivity increased with a
peak in the mid-1990s and has been decreasing since to lev-
els lower than those observed at the start of the series, with
a short increase in the last year of the time series. Similarly,
Celtic Sea whiting (whg.27.7b-ce-k) displayed an erratic de-
cline in productivity since 1990. This productivity trend dif-
fered from those for other stocks in the southern CSE. Bris-
tol Channel and Celtic Sea sole (sol.27.7fg) displayed erratic
fluctuations in productivity with an increase in the most re-
cent years. Productivity of West and Southwest of Ireland and
Bay of Biscay megrim (meg.27.7b-k8abd) displayed fluctua-
tions but did not display a clear long-term trend. Celtic Seas
and Bay of Biscay white anglerfish (mon.27.78abd) fluctuated
with a slow long-term increasing trend.

Northeast Atlantic widely distributed stocks typically dis-
played erratic fluctuations (Figure 1). Iceland and Faroes
grounds, west of Scotland, north of Azores, and east of Green-
land golden redfish (reg.27.561214) displayed a decreasing
long-term trend in productivity. Northeast Atlantic blue whit-
ing (whb.27.1-91214) displayed an erratic long-term trend
in productivity slowly increasing. Northeast Atlantic spurdog
(dgs.27.nea) displayed relatively constant productivity until
the late 1950s and has subsequently fluctuated erratically with
no long-term directional trend (Figure 1). Northeast Atlantic
mackerel (mac.27.nea) displayed relatively constant produc-
tivity until 2000, a subsequent marked increase and fluctuated
around a higher productivity level since (Figure 1).

Correlation analysis between stock’s productivity patterns

The correlation of time-varying maximum productivity across
stocks showed patterns in productivity within and among re-
gions and species. Correlations within northern and southern
CSE stocks were mostly positive, showing also positive cor-
relations with some stocks in the central region and north-
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east Atlantic widely distributed stocks (Figure 3). This sug-
gests that regional-scale factors might be important drivers
of changes in recruitment productivity. Among central CSE
stocks, some correlations were positively strong between Irish
Sea whiting and herring, and between sole stocks (Bristol
Channel, Celtic Sea, and Irish Sea sole) and Irish Sea cod.
These groups were negatively correlated with each other
(Figure 3).

Occasionally, productivity time series had strong positive
correlations among stocks from different regions, strong cor-
relations are shown between cod stocks (Celtic Sea and Irish
Sea cod), Celtic Sea whiting, and West of Scotland and West of
Ireland herring (Figure 3), which had marked decreasing pro-
ductivity trends (Figure 1). In other cases, productivity corre-
lations with most stocks were weak, e.g. for northeast Atlantic
mackerel, Celtic Seas and Bay of Biscay white angler fish, and
West and Southwest of Ireland and Bay of Biscay megrim, sug-
gesting unique patterns in recruitment productivity for these
stocks.

We found that productivity correlations within stocks of
the same species were mostly positive. Productivity patterns
for cod, haddock, and sole stocks in the ecoregion showed
strong positive correlations. Productivity patterns of whiting
stocks show positive correlations between West of Scotland
and southern Celtic Seas stocks but were negatively correlated
with Irish Sea whiting (Figure 3).

CSE time-varying density-dependent mortality

The four stocks that showed evidence of time-varying
density-dependent mortality displayed different patterns
(Figure 4). For most stocks, the average time-varying density-
dependent mortality was lower than the time-invariant
density-dependence level. The time-varying model shows
stronger density-dependent processes (more negative), espe-
cially at recent and current levels. North Sea, Irish Sea,
English Channel, Bristol Channel, and Celtic Sea seabass
(bss.27.4bc7ad-h) displayed increasing density-dependent
mortality at the beginning of the time series with a peak in
the early 2000s and a decrease since then (Figure 4). North-
ern hake stock (hke.27.3a46-8abd) density-dependent mortal-
ity increased with a peak around 2009 and has declined since
then (Figure 4). Irish Sea plaice (ple.27.7a) displayed fluctua-
tions in density-dependent mortality with no clear long-term
trend (Figure 4). North Sea, Rockall and West of Scotland
saithe (pok.27.3a46) time-varying density-dependent mortal-
ity displays fluctuations but overall declined considerably over
the time series, displaying significant differences with the time-
invariant density-dependent mortality (Figure 4).

Discussion

We found evidence of non-stationary maximum productivity
and density-dependent mortality for many stocks in the CSE
manifested as important changes in the temporal trends in re-
cruitment productivity parameters. In this section, we consider
the important biological insights of PPM models, examine
productivity dynamics in the CSE, explain data and method
caveats, and remark on implications for management.

Biological insight of PPM models

PPM enabled the identification of temporal patterns in the pa-
rameters of the stock—recruitment model. PPM permits esti-

P. Silvar-Viladomiu et al.

mation of the integrated effects of underlying processes influ-
encing recruitment while reducing the confounding from ran-
dom sources of noise or variability independent of the trend
(Peterman et al., 2003; Holt and Peterman, 2004). Applying
PPM, we can model how recruitment productivity changes
over time. This improves estimates of systematic underlying
changes in productivity—revealing the underlying signal (Pe-
terman et al., 2000; Dorner et al., 2008). We showed that pa-
rameters of the stock-recruitment relationship often vary over
time, which offers valuable insight into complex temporally
variable regulation processes in changing ecosystems.

In the Ricker model, the parameters have differentiated
density-dependent effects of spawner abundance on produc-
tivity and density-independent effects. The maximum produc-
tivity is the mean productivity at low stock sizes and captures
variations in recruitment separating environmental effects and
maternal effects from the effects of density in adult biomass.
Being the density-independent parameter, time-varying max-
imum productivity influences stock recruitment regardless of
spawner abundance (Dorner et al.,2008) and integrates the di-
rect environmental signal. Changes in the density-dependence
mortality parameter impact recruitment related to the stock
size. Detecting which parameter varies in time, which is of
great ecological interest, is difficult. For some stocks, goodness
fit differences between the time-variant models (time-varying
maximum productivity and time-varying density-independent
mortality) were small. In these cases, it would be useful to eval-
uate the behaviour of the model that allows both parameters
to covary in time. Also, applying ensemble modelling (Jardim
et al., 2021) could be useful in cases when the understand-
ing of the dynamics is incomplete (i.e. averaging the weight of
each time-variant model based on AIC).

Our analysis indicated that, for most stocks in the CSE
individual stock-recruitment parameters changed. Evidence
of time-varying maximum productivity was found for many
stocks in the CSE, and changes in density dependence were
also important for some stocks. Changes in the maximum-
productivity parameter would impact recruitment at all stock
sizes. Changes that result in reduced maximum productiv-
ity might be problematic, and changes that result in stronger
density dependence have consequences for the stability of the
population (Britten et al., 2016). Our results did not find ev-
idence of both parameters covarying in time. Previous uni-
variate implementations of PPM indicated that models with
time-varying maximum productivity and constant density-
dependent mortality fitted best (Peterman et al., 2003; Dorner
et al., 2008). Additionally, multivariate implementations also
show improved goodness of fit of the time-varying maximum
productivity and density-dependence being relatively stable in
time (Minto et al., 2014).

Dynamics in the CSE

For most stocks in the CSE, recruitment productivity has var-
ied over time, which suggests that the productivity of many
stocks is non-stationary, as found also by Minto et al. (2014)
for Atlantic cod stocks and by Tableau ef al. (2019) for New
England stocks. The observed changes in productivity might
be caused by external (i.e. environment) or internal changes
and multiple direct and indirect drivers and mechanisms.
These changes might depend on fish species or even stocks as
life-history characteristics of populations might differ (Subbey
et al., 2014). Additionally, the effects of these processes may
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Figure 3. Estimated pairwise productivity correlation for stocks in the CSE (significance level of 0.01). Red represents positive correlations, and blue
represents negative correlations. Stocks are hierarchically clustered by complete linkage method. Stock descriptions are provided in Table 1. Stock labels
in blue are for northern CSE stocks, in green for central CSE stocks, in orange for southern CSE stocks, and in pink for NEA widely distributed stocks.
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Figure 4. Estimated time series trends in density-dependent mortality (b;) and 95% confidence intervals for stocks in the CSE. The horizontal dashed
orange line is the time-invariant density-dependent mortality parameter. Stock descriptions are provided in Table 1.

change over time (Stige et al., 2006; Ottersen ef al., 2013).
Hence, change patterns and timing are very stock dependent.
A mechanistic understanding of why Celtic Sea stock produc-
tivity has changed is beyond the scope of this study, but it
would be crucial to investigate in the future. In this section, we
discuss productivity temporal patterns and hypothesize some
of the possible reasons for changes in productivity.

We observed long-term shared trends, for example, the
overall decline in productivity for many stocks in the CSE with
a considerable positive correlation, suggesting that regional
factors might be important drivers of changes in productiv-
ity. The consistent patterns in productivity observed between
some stocks indicate that common factors (e.g. environmen-
tal conditions) may influence those populations. Alternatively,
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some stocks responded differently, particularly for the cen-
tral region and northeast Atlantic widely distributed stocks.
This might reflect that fish populations are affected by more
than one driver or react differently to the same drivers. For
example, the effects of climate variability on fish productivity
can vary between regions (Parsons and Lear, 2001). Further-
more, current and historical levels of fishing pressure might
have been different for different stocks.

Internal stock changes such as changes in age structure in-
fluence stock productivity (Stenseth et al., 1999; Wright and
Gibb, 2005; Ohlberger et al., 2022). These changes in stock
structure can be caused by fishing or climate change, and the
CSE has had high levels of fishing pressure historically (Zim-
mermann and Werner, 2019). Northern and southern whiting
stocks’ productivity had a positive correlation but was nega-
tively correlated to the productivity of the central stock (Irish
Sea whiting). For irish Sea whiting historically high levels of
fishing mortality caused a considerable reduction in spawning
stock biomass; however, this did not result in significant ear-
lier maturation (Gerritsen et al., 2003). Since the 1980s, the
decline in biomass, and the reduction in length- and weight-
at-age might have reduced the potential for compensatory
changes in reproductive output (Gerritsen et al., 2003), which
could have caused the low peak in productivity for the Irish
Sea whiting.

We found mainly consistent patterns within stocks of the
same species. Patterns in productivity were strongly positively
correlated for neighbouring CSE stocks of the same species for
cod, sole, and haddock. For cod stocks, there is a general de-
cline in productivity with a strong correlation, which suggests
common processes might be operating. The decline in pro-
ductivity might have been caused by overexploitation (Myers
et al., 1996). Additionally, cod survival during early life stages
could be affected by temperature, as survival was found to
decline with increasing temperatures in the northeastern USA
(Fogarty et al., 2008). The consequences of environmental-
related regime shifts on cod productivity were found to be
accentuated when fishing mortality is high and populations
are small (Perild et al., 2020). Relationships between matura-
tion, recruitment, and sea temperature can differ for regionally
different cod populations (Armstrong et al., 2004). For Irish
sea cod, maturity and growth changed over time, showing an
increase over time in proportion mature and reduced size-at-
age which coincided with rising sea surface temperature and
a decline in recruitment and stock biomass and high fishing
mortality (Armstrong et al., 2004). While being different pop-
ulations, a combination of these effects could be contributing
to the downward productivity trend of all the CSE cod stocks.

The density-dependent mortality relates to stock size but
can be affected by many factors, e.g. competition, juvenile
habitat, and age structure (Myers, 2001), and thus changes
in density-dependent mortality might be stock dependent.
The northern hake stock has had a decrease in fishing mor-
tality and an increase in spawning stock biomass, since
around 2010, which might be related to the strengthening of
density-dependent mortality. Similarly, the increase in spawn-
ing biomass of the North Sea, Rockall and West of Scotland,
Skagerrack, and Kattegat saithe since the late 1990s might be
affecting the strengthening of the density dependence.

P. Silvar-Viladomiu et al.

Data and method caveats

The Ricker stock-recruitment model used for this study has
overcompensation (declining recruitment) at higher spawner
abundances, which does not happen for all species. Time-
varying Ricker parameters have been widely used for salmon
populations (Peterman ef al., 2003; Holt and Peterman, 2004;
Peterman and Dorner, 2012). The Ricker model has been con-
sidered to provide a reasonable model for estimating the slope
at the origin of stocks (Myers et al., 1999). Minto et al. (2014)
applied PPM with time-varying parameters in a Ricker model
for cod populations, and Tableau ef al. (2019) applied it to
New England fish populations. Britten et al. (2016) used the
Ricker model to perform a global analysis of time-varying pro-
ductivity trends of 262 stocks worldwide. The Ricker model
has the advantage of its easy linearization, which allows the
use of the Kalman filter to estimate the time-varying pa-
rameters. Additionally, the parameter separation into density-
independent and density-dependent components of the Ricker
makes for a more straightforward interpretation. Both the pa-
rameter « in Ricker models and the slope at the origin for the
Beverton—-Holt can be interpreted as the maximum annual re-
productive rate directly or by standardization (Myers, 2001).
The main difference between these models would be caused by
the different forms of density-dependent mortality assumed
by the model. Nonetheless, more research and development
are needed to be able to implement the PPM in other stock—
recruitment models such as the Beverton—Holt.

Data used to estimate recruitment productivity, i.e. recruits
and spawner abundance, are estimated from stock assessment
models and have considerable associated uncertainty and cor-
relation between estimates (Brooks and Deroba, 2015). Most
assessments in this study do not assume a stock-recruitment
relationship and allow for large estimated recruitment devi-
ations. The majority of the stocks in this study were cate-
gory 1, i.e. stocks with analytical assessments. Estimated re-
cruitment variability in data-rich stocks with recruitment in-
dices is thought to be more robust to recruitment assumptions,
and so the recruitment variability signal in the data is suffi-
ciently strong (Dickey-Collas et al.,2015). Additionally, many
of the stocks studied were historically overexploited, which
provided resolution and contrast on population dynamics at
low population abundance. The method would be improved
by investigating the inclusion of assessment uncertainty and
covariance of the recruitment and spawning stock biomass
estimates. There could be two profitable ways forward with
this: (i) for recruitment uncertainty, this could be added to the
measurement-error variance matrix of the Kalman filter such
that the minimal measurement error variance is no lower than
the estimated recruitment uncertainty; and (ii) bootstrapping
from the joint posterior distribution of the SSB and recruit-
ment estimates and running the Kalman filter for each boot-
strap replicate.

The univariate PPM approach might fail to separate the
measurement error and the process variability for some of
the stocks’ time series. This issue is related to a flat likeli-
hood around its maximum in the estimation process (Petris
et al., 2009; Tableau et al., 2019). Although this might be re-
solved with longer time series, when longer time series are not
available, estimating the time-varying parameters collectively
using a multivariate model could be a solution (Minto et al.,
2014). Moreover, estimating a common signal-to-noise ratio
reduces the number of parameters to estimate and is thought
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to be more robust to shorter time series (Tableau et al., 2019).
However, the univariate approach, used in this study, is useful
for assessing a single stock and getting a population’s view on
recruitment productivity variability in time. Potentially, know-
ing the region’s signal-to-noise ratio could be used to inform
the model and might help in cases where the separation of ob-
servation error from process error is not robust. More gener-
ally, understanding how the signal-to-noise ratio varies across
regions may provide insights into the nature of change more
globally.

Implications for management

Currently, time-invariant stock—recruitment parameters over
the available time series are typically used to derive reference
points for management advice (ICES, 2021b). This approach
assumes a stationary stock-recruitment relationship and ac-
counts for average environmental and fishing conditions but
is not robust if the ecosystem changes (Silvar-Viladomiu et al.,
2022). Stock-recruitment parameters are critical in many
problems in fisheries management because they affect the esti-
mation of reference points and sustainable harvest rates (Holt
and Michielsens, 2020; Zhang et al., 2021). We discovered
long-term trends and mismatches between time-invariant and
time-varying maximum productivity and density-dependent
mortality parameters. We showed temporal patterns in the re-
cruitment productivity of CSE stocks, which is relevant for
sustainable advice, especially in the presence of long-term
trends in productivity levels. For example, stocks that have
continuously declined in maximum productivity would be im-
mediate red flags of time-invariant reference points, hence
their implications for sustainable management should be ex-
plored.

Advice frameworks typically consider stock productivity
regime shifts. When regime shifts are detected, ICES guidelines
recommend using a data window of spawner and recruit pairs
or truncating the time series (ICES, 2021b). Choosing recruit-
ment windows to derive reference points can be problematic
because shorter time series lead to disregarding earlier dynam-
ics and increase uncertainty in reference points (Deurs et al.,
2021). Productivity changes are often gradual making it diffi-
cult to choose a time window (Collie ez al., 2021). Incorpora-
tion of ecosystems and climate information into stock assess-
ments and advice has shown to be necessary but challenging
(Punt et al., 2014; Bentley et al., 2021). We argue that in the
context of ecosystem changes affecting productivity, tracking
time-varying stock recruitment productivity, estimating dy-
namic reference points, and measuring current productivity
levels are crucial for management (Collie et al., 2021; Silvar-
Viladomiu et al., 2022). Tableau et al. (2019) demonstrated
that the short-term forecast power for time-varying produc-
tivity models generally outperformed time-invariant models.
Beyond forecasting, time-varying productivity models can di-
rectly inform sustainable harvest practices (Collie et al., 2012,
2021). Stochastic dynamic programming studies have shown
that the time-invariant harvest control rule based on average
productivity performed similarly to the dynamic harvest con-
trol rule except at low productivity (Collie ez al., 2021). This
occurs because changes in maximum productivity at low pro-
ductivity have a stronger effect on the optimal harvest rate
than changes in the same parameter at high productivity. Con-
sequently, special care is needed at low productivity levels.
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Implementations of time-varying productivity frameworks
have shown the ability to improve on time-invariant man-
agement (Collie et al., 2012), with particular importance for
management in the context of climate change (Collie et al.,
2021). Dynamic methods such as the PPM, capable of track-
ing changes in stock productivity, are outstanding because
although a mechanistic understanding of the processes that
affect productivity is important, ultimately, is not needed
for tactical decision-making now (Minto et al., 2014; Col-
lie et al., 2021; Silvar-Viladomiu et al., 2022). Further re-
search is needed to study non-stationary productivity with
management strategy evaluations to test the implementation
of time-varying recruitment productivity. In view of the evi-
dence that CSE fish recruitment productivity is changing over
time, fisheries science and advice should take it into account,
and management must respond to be robust to these produc-
tivity changes.
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