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Abstract 

The Celtic Seas ecoregion (CSE) is undergoing climatic and ecosystem c hanges, whic h can induce c hanges in fish productivity . Globally , 
the productivity of many stocks has shown evidence of change over decadal timescales. Varying factors might drive these dynamics 
in the CSE, but for many stocks, these mechanisms have not been fully understood to be included in management advice. We study 
dynamic productivity for 28 stocks in the Celtic Seas by tracking integrated stochastic signals in the relationship between stock size 
and recruitment using state-space modelling applying Peterman’s Productivity Method. Our research objectives were to (i) fit Ricker 
stock–recruitment models with time-varying parameters to all age- or length-based assessed stocks in the CSE, (ii) evaluate which 

parameters vary in time, (iii) examine temporal characteristics of historical recruitment productivity, and (iv) evaluate productivity 
correlation across stocks. For 22 out of 28 stocks, at least one of the three time-varying parameter models had a better fit than the time- 
invariant model. In the CSE, fish productivity has diverse temporal patterns, with some stocks displaying relevant long-term decreasing 

productivity trends. Getting insight into temporal changes in recruitment productivity is very valuable and has important implications 
for sustainable fisheries. 

Keywords: dynamic reference points; ecosystem approach; non-stationarity productivity; Peterman’s productivity method; time-varying parameters 
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Introduction 

The ICES Celtic Seas ecoregion (CSE) covers a major part of 
the northwestern European continental shelf. This ecoregion 

also includes areas of the deeper eastern Atlantic Ocean as 
well as coastal waters that are heavily influenced by oceanic 
inputs (ICES, 2021a ). Previous studies in the area suggest that 
marine communities respond to the combined effect of fish- 
eries and climate (Lynam et al., 2010 ). Environmental changes,
such as changes in the North Atlantic Oscillation, can produce 
temporal changes in oceanographic conditions, which, in turn,
can cause ecological responses such as changes in the repro- 
duction timing, abundance, growth, spatial distribution, mor- 
tality, and inter-specific relationships (Ottersen et al., 2001 ).
Climate change and extreme events could potentially cause 
important changes in the ecoregion (Richardson and Schoe- 
man, 2004 ; Drinkwater et al., 2010 ). While broad environ- 
mental variability and trends are evident, the mechanisms af- 
fecting the ecosystem and the populations are complex (Sug- 
ihara et al., 2012 ; Fogarty et al., 2016 ). Thus, although it 
is known that environmental drivers affect recruitment (e.g.
Kristiansen et al., 2011 ), these relationships are not fully un- 
derstood and tend to be unstable over time (Myers, 1998 ; Stige 
et al., 2006 ; Ottersen et al., 2013 ). 

Recruitment productivity is vital for the renewal of the 
population. In stock assessments, understanding the relation- 
ship between recruits and spawner biomass is key for the 
sustainable management of fisheries but notoriously variable 
© The Author(s) 2023. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
nd traditionally difficult to understand (Hilborn and Wal- 
ers, 1992 ; Myers, 1994 ). The stock–recruitment relationship,
sed to estimate maximum sustainable yield fishing mortal- 
ty and biomass reference points, is typically modelled as a
tationary process where the parameters are fixed based on 

istorically constant estimates (time-invariant; Collie et al.,
012 , 2021 ; Silvar-Viladomiu et al., 2022 ). However, popu-
ation dynamics processes, on top of operating over different 
ensity ranges, may operate at different times (Zeng et al.,
998 ). Globally many stocks’ productivity has shown evi- 
ence of non-stationarity (Vert-pre et al., 2013 ) and displayed
vidence of temporal variation in parameters of the stock–
ecruitment relationship (Peterman et al., 2003 ; Dorner et al.,
008 ; Minto et al., 2014 ; Britten et al., 2016 ; Tableau et al.,
019 ). Temporal changes in productivity have important im- 
lications for reference points (Kell et al., 2016 ; Clausen et al.,
018 ; Holt and Michielsens, 2020 ; Zhang et al., 2021 ; Silvar-
iladomiu et al., 2022 ), upon which fishing opportunities ad-
ice is based. Stock–recruitment models with time-varying 
arameters developed by Peterman and colleagues [Peter- 
an’s productivity method (PPM); Peterman et al., 2000 ; 

ilvar-V iladomiu et al. , 2022 ] can track integrated under-
ying signals of change in productivity and identify trends 
Peterman et al., 2003 ). 

For sustainable management of the CSE stocks, it is criti-
ally important that temporal trends in recruitment productiv- 
ty are detected in a timely and reliable manner (Dorner et al.,
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted 
is properly cited. 

http://orcid.org/0000-0002-9983-3744
http://orcid.org/0000-0003-0630-6775
http://orcid.org/0000-0001-8929-3513
http://orcid.org/0000-0003-3519-6560
http://orcid.org/0000-0002-7708-4105
http://orcid.org/0000-0002-8494-0918
mailto:paula.silvarviladomiu@gmail.com
https://creativecommons.org/licenses/by/4.0/


2330 P. Silvar-Viladomiu et al. 

2  

i  

l  

i  

T  

t  

2  

m  

p  

p  

j  

t  

r  

h  

t

M

R  

W  

r  

m  

o  

C  

s  

s  

r  

t  

a  

t  

t  

m  

a  

a  

w  

i  

s  

f  

w  

a  

g  

l  

a  

c  

r  

a  

n  

l  

s  

(
r  

s  

s  

d  

l  

u  

d  

h  

a  

a  

s  

s  

s  

m  

e  

s  

a  

0  

s  

s  

f  

s  

e  

o

M

W  

e  

r  

o  

c
r  

R  

t  

c  

t  

e  

b

 

w  

b  

m  

a
 

i  

t  

t  

d  

fi  

D  

T  

i
 

m  

i  

t  

T  

a  

t  

o  

o  

d  

m
 

m  

p

 

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/80/9/2329/7282467 by N
O

AA C
entral Library user on 11 January 2024
008 ). Understanding the temporal dynamics of recruitment
s crucial as recruitment determines future productivity for
ong-lived stocks, mediated by natural mortality, and prox-
mal productivity for short-lived recruitment-driven stocks.
his understanding also contributes to identifying long-term

rends and abrupt changes such as regime shifts (Perälä et al.,
020 ). To better understand how -rather than why- recruit-
ent productivity has varied over decadal timescales, we ap-
lied PPM and extracted filtered and smoothed time series
atterns for multiple species and stocks in the CSE. Our ob-
ectives were to (i) fit stock–recruitment models with different
ime-varying parameter configurations, (ii) evaluate which pa-
ameters vary in time, (iii) examine temporal characteristics of
istorical recruitment productivity, and (iv) evaluate produc-
ivity correlation across stocks. 

aterial and methods 

ecruitment and spawning stock biomass estimates

e used the time series of spawning stock biomass ( SSB ) and
ecruitment ( R ) estimates from the most recent stock assess-
ents issued by the International Council for the Exploration
f the Sea (ICES). For stocks residing at least partially in the
SE, we extracted the data via XML from the ICES Stock As-

essment Graphs database (ICES, 2022 ). From that list, the
tocks her.27.1-24a514a (Norwegian spring-spawning her-
ing) and lin.27.5b (Faroe grounds ling) were excluded from
he analysis because the boundaries of the stock showed only
 minor overlap with the CSE. We filtered for assessments
hat estimated spawning stock biomass and used “SSB” in
he stock size description. Twenty-nine stocks were selected,
ost of which were category 1 (i.e. stocks with quantitative

ssessments), except for cod.27.7a and her.27.6a7bc, which
t the time of data extraction were category 3 (i.e. stocks for
hich survey-based assessments or exploratory assessments

ndicate trends). However, we used data from the 2018 as-
essment, when the stocks were considered category 1, so a
ull analytical stock assessment was carried out. One stock
ith a short time series ( < 20 years) was excluded from the

nalysis (bli.27.5b67, blue ling in the Celtic Seas and Faroes
rounds). Assessment methodologies were typically age- or
ength-structured ( Table 1 ). While some assessments contain
 stock–recruitment model to develop initial estimates of re-
ruitment, if recruitment deviations are included, the annual
ecruitment estimates are informed by the available length
nd age data. Most of the assessments in this study did
ot assume a stock–recruitment relationship and included a
arge standard deviation ( Supplementary Table S1 ). Stock as-
essments in this study that use extended survivors analysis
XSA), Gadget, and a4a models do not assume any stock–
ecruitment relationship. Assessments that use state-space as-
essment model (SAM) here assume no stock-recruit relation-
hip and parameterized logarithm of recruitment with a ran-
om walk with high process variation, effectively estimating
og recruitment as a free parameter. Some assessments that
se age-structured assessment program (ASAP) in this study
o not assume a stock–recruitment relationship (had.27.7a,
er .27.irls, her .27.irls); the other ASAP assessment (cod.27.7a)
ssumes a Beverton–Holt stock–recruitment relationship with
n annual recruitment CV of 0.5 that allows largely uncon-
trained variation in recruitment. The SS3 assessments in this
tudy, assume a Beverton–Holt stock–recruitment relation-
hip with fixed steepness, equal to 0.9 and included recruit-
ent variation big enough to give flexibility to the model to

stimate recruitment deviations adequately for this stock, and
teepness was estimated for hke.27.3a46-8abd. The spurdog
ssessments included a recruitment variability parameter of
.2 (De Oliveira et al., 2013 ). This lower deviation might con-
train the magnitude of the time variation, but the patterns
hould remain similar. Stocks were classified using metadata
rom the assessment by region (northern CSE, central CSE,
outhern CSE, and northeast Atlantic wide area). The North-
ast Atlantic wide area classifies stocks that cover a wide part
f the Northeast Atlantic. 

odel details 

e applied PPM, which is a state-space dynamic model for
stimating time-varying parameters of the stock–recruitment
elationship (see Silvar-Viladomiu et al., 2022 ). We focused
n the univariate (single-population) PPM to study the re-
ruitment productivity of CSE stocks. We described the stock–
ecruitment relationship with the linearized version of the
icker model (Ricker, 1954 ), which depends on two parame-

ers: a maximum productivity and a density-dependent coeffi-
ient (Peterman et al., 2000 ). We use the natural logarithm of
he survival ratio R / S (also termed the “killing power”, My-
rs 2001 ). The linearized Ricker model follows the function
elow: 

ln 

(
R t 

S t−τ

)
= a + bS t−τ + υt 

υt ∼ N(0 , σ 2 
υ ) , (1)

here R t is the recruitment in year t , S t −τ is the spawning stock
iomass in time t (lag by the age of recruitment τ ), a is the
aximum productivity, b is the density-dependent mortality,

nd υt is an amalgam of process and observation errors. 
We evaluated four different models as follows: (i) time-

nvariant Ricker model, (ii) time-variant maximum produc-
ivity Ricker model, (iii) time-variant density-dependent mor-
ality Ricker model, and (iv) time-covariant maximum pro-
uctivity and density-dependent mortality Ricker model. We
tted the models by maximization of the likelihood within the
LM package (Petris et al., 2009 ) in the statistical software R.
o estimate time-varying parameters, the Kalman filter was

mplemented. 
First, we estimated the time-invariant linearized Ricker
odel. This model is stationary in its parameters because

t assumes that the parameters are constant across the en-
ire time series of spawner and recruit data (Equation 1 ).
he maximum-productivity coefficient ( a ) is the natural log-
rithm of α in the traditional Ricker formulation, which is
he maximum reproductive rate and represents the product
f the fecundity and density-independent mortality integrated
ver time from spawning to recruitment (Ricker, 1954 ). The
ensity-dependent mortality ( b ) gives the rate at which recruit-
ent is reduced by density-dependent mortality. 
For the second model, we estimated the time-varying
aximum-productivity parameter. We allow the stochastic
arameter(s) to vary via a random-walk process: 

ln 

(
R t 

S t−τ

)
= a t + bS t−τ + υt , (2)

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab146#supplementary-data
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a t = a t−1 + ω t 

ω t ∼ N(0 , σ 2 
ω ) , (3) 

here ω t is the process error. Allowing the parameters to vary
ver time permits the separation of process variation in the
arameters from measurement error in survival (Minto et al.,
014 ). We assumed a random-walk process for the system
quation because we had no a priori knowledge of temporal
atterns in the parameter. Besides, a random-walk model per-
ormed well at tracking a wide variety of underlying temporal
rends (Peterman et al., 2000 ; Dorner et al., 2008 ; Minto et al.,
014 ). The density-dependent parameter, b , in this model, is
ime-invariant. 

For the third model, we estimated time-varying density-
ependent mortality, following stochastic variation with a
andom walk process: 

ln 

(
R t 

S t−τ

)
= a + b t S t−τ + υt , (4) 

b t = b t−1 + ω t 

ω t ∼ N(0 , σ 2 
ω ) , (5) 

here ω t is the process error. The maximum-productivity pa-
ameter, a , in this model, is time-invariant. 

For the fourth model, we estimate time-varying maximum
roductivity and density-dependent mortality by allowing
oth parameters to covary, following a correlated random
alk: 

ln 

(
R t 

S t−τ

)
= a t + b t S t−τ + υt , (6) 

[
a t 
b t 

]
∼ N 

([
a t−1 

b t−1 

]
, 

[
σ 2 

a ρσa σb 

ρσa σb σ 2 
b 

])
, (7) 

here ρ is the correlation between the process deviations of a
nd b . 

odel comparison 

o identify the best model for the given time series, we used
oodness-of-fit statistics. We evaluated the models based on
he model selection criterion Akaike information criterion
AIC; Burnham and Anderson 2004 ). The AIC was calculated
sing the analytical solution for the log-likelihood from the
alman filter algorithm including the number of variance pa-

ameters and the dimension of the state vector. The best-fitting
odel was judged by the difference ( δ) between the AIC val-
es of the models. The most parsimonious of the four model
ts was the model with the lowest AIC value. Models within
 AIC units of the lowest were considered equally plausible
odels. Models with the lowest AIC with a difference of equal
r more than 2 units were considered to have substantial sup-
ort or evidence. 

SE productivity trends 

e continue the analysis focusing on stocks displaying ev-
dence of time-varying parameters. To understand temporal
atterns in dynamic recruitment productivity, we plotted the
arameter time series of the model with the lowest AIC, e.g.
he estimated a t time series from the time-variant maximum-
roductivity model or the estimated b t time series from the
ime-variant density-dependent mortality model. Additionally,
e plotted the relationship between the time-invariant esti-
ate and the mean of the time-varying maximum produc-

ivity for the full-time series and the last 5 years of the time
eries. 

orrelation analysis between stock’s maximum productivity
atterns 
e estimated the Spearman rank pairwise correlation between

tock-specific time-varying trends in productivity (for the
tock where the time-varying maximum productivity model
ad a better fit). The estimated time series of a t values consti-
uted our measure of productivity. We compared correlations
cross stocks to quantify the extent to which similar patterns
n the a t parameter are shared among stocks. To cluster the
tocks that have similar patterns, we performed a hierarchical
luster analysis on the pairwise correlations using hclust using
he “complete linkage” method in R. 

esults 

esults are divided into two sections. First, we compare
he goodness-of-fit of the time-invariant and the three time-
ariant stock–recruitment models. For the second part, we
ocus on the parameter temporal variation of the best-fitting
odels and describe the trends and correlations between

tocks. 

odel comparison and selection 

or 22 out of 28 stocks, at least one of the three time-varying
arameter models had a better fit than the time-invariant
odel (based on the difference between the two models’ AIC

alues). The best-fitting model results were unchanged using
ICc (Burnham and Anderson, 2004 ), a method used to
ddress small sample sizes. For six stocks, the time-invariant
odel had more support but equally plausible as the AIC
ifferences were small ( δ < 2; Table 2 ), except for two stocks
had.27.7a, hom.27.2a4a5b6a7a-ce-k8), which showed more
upport for the time-invariant model (with δ = 2). 

We found strong evidence that 22 stocks had time-varying
arameters because time-invariant models had considerably
ess support (with AIC δ > 2; Table 2 ). Comparisons of
odel fit showed that the model with time-varying maximum
roductivity had the strongest support for 18 stocks, and the
odel with time-varying density-dependent mortality had the

trongest support for four stocks. For six stocks both time-
arying parameter models were equally plausible because
hey had similar AIC support ( δ < 2; Table 2 ). For 14 stocks,
he time-varying maximum productivity had substantially
ore support relative to the time-varying density-dependent
ortality ( δ ≥ 2; Table 2 ), and for two stocks time-varying
ensity-dependence mortality had substantially more support
elative to the time-varying maximum productivity (ple.27.7a,
ok.27.3a46; Table 2 ). 
The models with both parameters covarying in time esti-
ated a high correlation between parameters for 60% of the

tocks ( Supplementary Table S2 ). These models never showed
etter AIC support because AIC penalized the use of a higher
umber of parameters ( Table 2 ). For most stocks, results of
he time-variant maximum-productivity model and the model
ith both parameters covarying showed similar trends for the
 t parameter ( Supplementary Figure S1 ). The fixed parameter
n the time-varying models often had scaling differences
rom the time-invariant value ( Supplementary Figures S1 and

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab146#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab146#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab146#supplementary-data
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Figure 1. Estimated time series trends in maximum productivity ( a t ) and 95% confidence intervals for stocks in the CSE, ordered by northern CSE, 
central CSE, southern CSE, and northeast Atlantic (NEA) wide area. The horizontal dashed line is the time-invariant maximum productivity parameter. 
Stock descriptions are provided in Table 1 . 

S  

t  

d  

m  

o  

p
S

C

T  

t  

o  

f  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/80/9/2329/7282467 by N
O

AA C
entral Library user on 11 January 2024
2 ), typically being higher fixed maximum productivity in
he time-varying density-dependent model and lower fixed
ensity-dependent in the time-varying maximum productivity
odel. When the best-fitting model was the time-invariant
ne ( Table 2 ), some stocks did not show temporal trends in the
arameters (e.g. had.27.7b-k and hom.27.2a4a5b6a7a-ce-k8; 

upplementary Figures S1 and S2 ). 
SE time-varying maximum productivity 

he stocks examined exhibit various temporal trends and pat-
erns in the maximum-productivity parameter. The amplitudes
f the time-varying productivity (in logarithmic scale) vary
rom < 1 (e.g. Faroes grounds and West of Scotland greater
ilver smelt, aru.27.5b6a) to around 5 (e.g. northeast At-

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab146#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab146#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab146#supplementary-data
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Figure 2. Time-in v ariant estimates of maximum productivity ( a ) related to mean time-v arying estimates of maximum productivity f or (a) full-time series 
and (b) the last 5 years. Stock descriptions are provided in Table 1 . 

 

 

d  

r  

f  

m  

s

v  

C
p  

e  

a  

C
c
f  

t
fl  

c  

B
t  

a
w

p  

g  

l
l
i
i
(
t
n  

m
t
a

C
T
s
g
C
r  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/80/9/2329/7282467 by N
O

AA C
entral Library user on 11 January 2024
lantic blue whiting, whb.27.1-91214) ( Figure 1 ). This vari- 
ability corresponds to the recruitment number per metric ton 

of the spawning stock biomass on a logarithmic scale. The 
longest series available was for the northeast Atlantic spur- 
dog (1905–2020), in Figure 1 , we truncated this time series 
because for most species the time series were considerably 
shorter. 

For some stocks, the current productivity level was substan- 
tially lower than at the beginning of the time series (e.g. West 
of Scotland whiting, whg.27.6a), but for other stocks current 
productivity was higher (e.g. Irish Sea herring, her.27.nirs) 
than or similar to historical productivity ( Figure 1 ). For most 
stocks, estimates of time-invariant maximum productivity 
were similar to or lower than the mean time-varying maxi- 
mum productivity ( Figure 2 a). However, for some stocks, re- 
cent time-varying maximum productivity was lower than the 
time-invariant one ( Figure 2 b); for example, Irish Sea cod 

(cod.27.7a) and West of Scotland and West of Ireland herring 
(her.27.6a7bc). 

With regard to northern CSE stocks, maximum produc- 
tivity has declined considerably for many stocks ( Figure 1 ),
e.g. West of Scotland whiting (whg.27.6a) and West of Scot- 
land and West of Ireland herring (her.27.6a7bc). The North 

Sea and West Scotland haddock (had.27.46a20) also dis- 
played declining productivity until 2012 with productivity 
increasing thereafter. West of Scotland whiting showed a 
steep decrease until 2009 and stabilization since. West of 
Scotland and West of Ireland herring displayed fluctuations 
with an overall declining long-term trend. Productivity of 
Faroes grounds and West of Scotland greater silver smelt 
(aru.27.5b6a) declined until the early 2000s and increased af- 
ter with a peak around 2009. Rockall haddock (had.27.6b) 
fluctuated, with a lower productivity point around 2010 

( Figure 1 ). 
In the central CSE, stocks showed a diversity of patterns 

( Figure 1 ). A decreasing trend was observed for Irish Sea 
cod (cod.27.7a) for the entire time series. Irish Sea whiting 
(whg.27.7a) had a low productivity level in the early 1990s,
productivity increased until the early 2000s and decreased 

since 2013 to levels similar to those at the beginning of the 
time series. Irish Sea sole (sol.27.7a) displayed decreasing pro- 
uctivity but with some increase in recent years. Irish Sea her-
ing (her.27.nirs) productivity was fairly stable at a low level
or the start of the time series and in the late 1990s had a
arked increase with a fairly stable period at a higher level

ince the mid-2000s. 
Southern CSE stocks had higher levels of currently time- 

arying productivity than the time-invariant one ( Figure 1 ).
eltic Sea cod (cod.27.7e-k) productivity increased with a 
eak in the mid-1990s and has been decreasing since to lev-
ls lower than those observed at the start of the series, with
 short increase in the last year of the time series. Similarly,
eltic Sea whiting (whg.27.7b-ce-k) displayed an erratic de- 

line in productivity since 1990. This productivity trend dif- 
ered from those for other stocks in the southern CSE. Bris-
ol Channel and Celtic Sea sole (sol.27.7fg) displayed erratic 
uctuations in productivity with an increase in the most re-
ent years. Productivity of West and Southwest of Ireland and
ay of Biscay megrim (meg.27.7b-k8abd) displayed fluctua- 

ions but did not display a clear long-term trend. Celtic Seas
nd Bay of Biscay white anglerfish (mon.27.78abd) fluctuated 

ith a slow long-term increasing trend. 
Northeast Atlantic widely distributed stocks typically dis- 

layed erratic fluctuations ( Figure 1 ). Iceland and Faroes
rounds, west of Scotland, north of Azores, and east of Green-
and golden redfish (reg.27.561214) displayed a decreasing 
ong-term trend in productivity. Northeast Atlantic blue whit- 
ng (whb.27.1-91214) displayed an erratic long-term trend 

n productivity slowly increasing. Northeast Atlantic spurdog 
dgs.27.nea) displayed relatively constant productivity until 
he late 1950s and has subsequently fluctuated erratically with 

o long-term directional trend ( Figure 1 ). Northeast Atlantic
ackerel (mac.27.nea) displayed relatively constant produc- 

ivity until 2000, a subsequent marked increase and fluctuated 

round a higher productivity level since ( Figure 1 ). 

orrelation analysis between stock’s productivity patterns 
he correlation of time-varying maximum productivity across 
tocks showed patterns in productivity within and among re- 
ions and species. Correlations within northern and southern 

SE stocks were mostly positive, showing also positive cor- 
elations with some stocks in the central region and north-
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ast Atlantic widely distributed stocks ( Figure 3 ). This sug-
ests that regional-scale factors might be important drivers
f changes in recruitment productivity. Among central CSE
tocks, some correlations were positively strong between Irish
ea whiting and herring, and between sole stocks (Bristol
hannel, Celtic Sea, and Irish Sea sole) and Irish Sea cod.
hese groups were negatively correlated with each other
 Figure 3 ). 

Occasionally, productivity time series had strong positive
orrelations among stocks from different regions, strong cor-
elations are shown between cod stocks (Celtic Sea and Irish
ea cod), Celtic Sea whiting, and West of Scotland and West of
reland herring ( Figure 3 ), which had marked decreasing pro-
uctivity trends ( Figure 1 ). In other cases, productivity corre-
ations with most stocks were weak, e.g. for northeast Atlantic
ackerel, Celtic Seas and Bay of Biscay white angler fish, and
est and Southwest of Ireland and Bay of Biscay megrim, sug-

esting unique patterns in recruitment productivity for these
tocks. 

We found that productivity correlations within stocks of
he same species were mostly positive. Productivity patterns
or cod, haddock, and sole stocks in the ecoregion showed
trong positive correlations. Productivity patterns of whiting
tocks show positive correlations between West of Scotland
nd southern Celtic Seas stocks but were negatively correlated
ith Irish Sea whiting ( Figure 3 ). 

SE time-varying density-dependent mortality 

he four stocks that showed evidence of time-varying
ensity-dependent mortality displayed different patterns
 Figure 4 ). For most stocks, the average time-varying density-
ependent mortality was lower than the time-invariant
ensity-dependence level. The time-varying model shows
tronger density-dependent processes (more negative), espe-
ially at recent and current levels. North Sea, Irish Sea,
nglish Channel, Bristol Channel, and Celtic Sea seabass

bss.27.4bc7ad-h) displayed increasing density-dependent 
ortality at the beginning of the time series with a peak in

he early 2000s and a decrease since then ( Figure 4 ). North-
rn hake stock (hke.27.3a46-8abd) density-dependent mortal-
ty increased with a peak around 2009 and has declined since
hen ( Figure 4 ). Irish Sea plaice (ple.27.7a) displayed fluctua-
ions in density-dependent mortality with no clear long-term
rend ( Figure 4 ). North Sea, Rockall and West of Scotland
aithe (pok.27.3a46) time-varying density-dependent mortal-
ty displays fluctuations but overall declined considerably over
he time series, displaying significant differences with the time-
nvariant density-dependent mortality ( Figure 4 ). 

iscussion 

e found evidence of non-stationary maximum productivity
nd density-dependent mortality for many stocks in the CSE
anifested as important changes in the temporal trends in re-

ruitment productivity parameters. In this section, we consider
he important biological insights of PPM models, examine
roductivity dynamics in the CSE, explain data and method
aveats, and remark on implications for management. 

iological insight of PPM models 

PM enabled the identification of temporal patterns in the pa-
ameters of the stock–recruitment model. PPM permits esti-
ation of the integrated effects of underlying processes influ-
ncing recruitment while reducing the confounding from ran-
om sources of noise or variability independent of the trend
Peterman et al., 2003 ; Holt and Peterman, 2004 ). Applying
PM, we can model how recruitment productivity changes
ver time. This improves estimates of systematic underlying
hanges in productivity—revealing the underlying signal (Pe-
erman et al., 2000 ; Dorner et al., 2008 ). We showed that pa-
ameters of the stock–recruitment relationship often vary over
ime, which offers valuable insight into complex temporally
ariable regulation processes in changing ecosystems. 

In the Ricker model, the parameters have differentiated
ensity-dependent effects of spawner abundance on produc-
ivity and density-independent effects. The maximum produc-
ivity is the mean productivity at low stock sizes and captures
ariations in recruitment separating environmental effects and
aternal effects from the effects of density in adult biomass.
eing the density-independent parameter, time-varying max-

mum productivity influences stock recruitment regardless of
pawner abundance (Dorner et al., 2008 ) and integrates the di-
ect environmental signal. Changes in the density-dependence
ortality parameter impact recruitment related to the stock

ize. Detecting which parameter varies in time, which is of
reat ecological interest, is difficult. For some stocks, goodness
t differences between the time-variant models (time-varying
aximum productivity and time-varying density-independent
ortality) were small. In these cases, it would be useful to eval-
ate the behaviour of the model that allows both parameters
o covary in time. Also, applying ensemble modelling (Jardim
t al., 2021 ) could be useful in cases when the understand-
ng of the dynamics is incomplete (i.e. averaging the weight of
ach time-variant model based on AIC). 

Our analysis indicated that, for most stocks in the CSE
ndividual stock–recruitment parameters changed. Evidence
f time-varying maximum productivity was found for many
tocks in the CSE, and changes in density dependence were
lso important for some stocks. Changes in the maximum-
roductivity parameter would impact recruitment at all stock
izes. Changes that result in reduced maximum productiv-
ty might be problematic, and changes that result in stronger
ensity dependence have consequences for the stability of the
opulation (Britten et al., 2016 ). Our results did not find ev-

dence of both parameters covarying in time. Previous uni-
ariate implementations of PPM indicated that models with
ime-varying maximum productivity and constant density-
ependent mortality fitted best (Peterman et al., 2003 ; Dorner
t al., 2008 ). Additionally, multivariate implementations also
how improved goodness of fit of the time-varying maximum
roductivity and density-dependence being relatively stable in
ime (Minto et al., 2014 ). 

ynamics in the CSE 

or most stocks in the CSE, recruitment productivity has var-
ed over time, which suggests that the productivity of many
tocks is non-stationary, as found also by Minto et al. ( 2014 )
or Atlantic cod stocks and by Tableau et al. ( 2019 ) for New
ngland stocks. The observed changes in productivity might
e caused by external (i.e. environment) or internal changes
nd multiple direct and indirect drivers and mechanisms.
hese changes might depend on fish species or even stocks as

ife-history characteristics of populations might differ (Subbey
t al., 2014 ). Additionally, the effects of these processes may
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Figure 3. Estimated pairwise productivity correlation for stocks in the CSE (significance level of 0.01). Red represents positive correlations, and blue 
represents negative correlations. Stocks are hierarchically clustered by complete linkage method. Stock descriptions are provided in Table 1 . Stock labels 
in blue are for northern CSE stocks, in green for central CSE stocks, in orange for southern CSE stocks, and in pink for NEA widely distributed stocks. 

Figure 4. Estimated time series trends in density-dependent mortality ( b t ) and 95% confidence intervals for stocks in the CSE. The horizontal dashed 
orange line is the time-in v ariant density -dependent mort alit y parameter. Stock descriptions are provided in Table 1 . 
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change over time (Stige et al., 2006 ; Ottersen et al., 2013 ).
Hence, change patterns and timing are very stock dependent.
A mechanistic understanding of why Celtic Sea stock produc- 
tivity has changed is beyond the scope of this study, but it 
would be crucial to investigate in the future. In this section, we 
discuss productivity temporal patterns and hypothesize some 
of the possible reasons for changes in productivity. 
We observed long-term shared trends, for example, the 
verall decline in productivity for many stocks in the CSE with
 considerable positive correlation, suggesting that regional 
actors might be important drivers of changes in productiv- 
ty. The consistent patterns in productivity observed between 

ome stocks indicate that common factors (e.g. environmen- 
al conditions) may influence those populations. Alternatively,



2338 P. Silvar-Viladomiu et al. 

s  

t  

T  

t  

e  

c  

m  

h
 

fl  

G  

s  

C  

m  

s  

t  

S  

fi  

s  

l  

d  

a  

c  

c  

S
 

s  

c  

c  

c  

c  

d  

e  

c  

d  

(  

r  

a  

a  

t  

d  

s  

i  

a  

a  

m  

u  

t  

 

c  

h  

i  

T  

t  

a  

d  

i  

S  

a

D

T  

o  

a  

v  

p  

P  

s  

a  

a  

f  

N  

R  

d  

h  

u  

r  

i  

m  

r  

B  

p  

T  

t  

b  

a
r

 

a  

m  

r  

a  

r  

a  

g  

c  

d  

a  

c  

o  

p  

l  

b  

c  

e  

t  

m  

t  

t  

f  

m  

s
 

m  

t  

h  

e  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/80/9/2329/7282467 by N
O

AA C
entral Library user on 11 January 2024
ome stocks responded differently, particularly for the cen-
ral region and northeast Atlantic widely distributed stocks.
his might reflect that fish populations are affected by more

han one driver or react differently to the same drivers. For
xample, the effects of climate variability on fish productivity
an vary between regions (Parsons and Lear, 2001 ). Further-
ore, current and historical levels of fishing pressure might
ave been different for different stocks. 
Internal stock changes such as changes in age structure in-

uence stock productivity (Stenseth et al., 1999 ; Wright and
ibb, 2005 ; Ohlberger et al., 2022 ). These changes in stock

tructure can be caused by fishing or climate change, and the
SE has had high levels of fishing pressure historically (Zim-
ermann and Werner, 2019 ). Northern and southern whiting

tocks’ productivity had a positive correlation but was nega-
ively correlated to the productivity of the central stock (Irish
ea whiting). For irish Sea whiting historically high levels of
shing mortality caused a considerable reduction in spawning
tock biomass; however, this did not result in significant ear-
ier maturation (Gerritsen et al., 2003 ). Since the 1980s, the
ecline in biomass, and the reduction in length- and weight-
t-age might have reduced the potential for compensatory
hanges in reproductive output (Gerritsen et al., 2003 ), which
ould have caused the low peak in productivity for the Irish
ea whiting. 

We found mainly consistent patterns within stocks of the
ame species. Patterns in productivity were strongly positively
orrelated for neighbouring CSE stocks of the same species for
od, sole, and haddock. For cod stocks, there is a general de-
line in productivity with a strong correlation, which suggests
ommon processes might be operating. The decline in pro-
uctivity might have been caused by overexploitation (Myers
t al., 1996 ). Additionally, cod survival during early life stages
ould be affected by temperature, as survival was found to
ecline with increasing temperatures in the northeastern USA
Fogarty et al., 2008 ). The consequences of environmental-
elated regime shifts on cod productivity were found to be
ccentuated when fishing mortality is high and populations
re small (Perälä et al., 2020 ). Relationships between matura-
ion, recruitment, and sea temperature can differ for regionally
ifferent cod populations (Armstrong et al., 2004 ). For Irish
ea cod, maturity and growth changed over time, showing an
ncrease over time in proportion mature and reduced size-at-
ge which coincided with rising sea surface temperature and
 decline in recruitment and stock biomass and high fishing
ortality (Armstrong et al., 2004 ). While being different pop-
lations, a combination of these effects could be contributing
o the downward productivity trend of all the CSE cod stocks.

The density-dependent mortality relates to stock size but
an be affected by many factors, e.g. competition, juvenile
abitat, and age structure (Myers, 2001 ), and thus changes
n density-dependent mortality might be stock dependent.
he northern hake stock has had a decrease in fishing mor-

ality and an increase in spawning stock biomass, since
round 2010, which might be related to the strengthening of
ensity-dependent mortality . Similarly , the increase in spawn-
ng biomass of the North Sea, Rockall and West of Scotland,
kagerrack, and Kattegat saithe since the late 1990s might be
ffecting the strengthening of the density dependence. 
a  

u  

2  

r  
ata and method caveats 

he Ricker stock–recruitment model used for this study has
vercompensation (declining recruitment) at higher spawner
bundances, which does not happen for all species. Time-
arying Ricker parameters have been widely used for salmon
opulations (Peterman et al., 2003 ; Holt and Peterman, 2004 ;
eterman and Dorner, 2012 ). The Ricker model has been con-
idered to provide a reasonable model for estimating the slope
t the origin of stocks (Myers et al., 1999 ). Minto et al. ( 2014 )
pplied PPM with time-varying parameters in a Ricker model
or cod populations, and Tableau et al. ( 2019 ) applied it to
ew England fish populations. Britten et al. ( 2016 ) used the
icker model to perform a global analysis of time-varying pro-
uctivity trends of 262 stocks worldwide. The Ricker model
as the advantage of its easy linearization, which allows the
se of the Kalman filter to estimate the time-varying pa-
ameters. Additionally, the parameter separation into density-
ndependent and density-dependent components of the Ricker
akes for a more straightforward interpretation. Both the pa-

ameter α in Ricker models and the slope at the origin for the
everton–Holt can be interpreted as the maximum annual re-
roductive rate directly or by standardization (Myers, 2001 ).
he main difference between these models would be caused by

he different forms of density-dependent mortality assumed
y the model. Nonetheless, more research and development
re needed to be able to implement the PPM in other stock–
ecruitment models such as the Beverton–Holt. 

Data used to estimate recruitment productivity, i.e. recruits
nd spawner abundance, are estimated from stock assessment
odels and have considerable associated uncertainty and cor-

elation between estimates (Brooks and Deroba, 2015 ). Most
ssessments in this study do not assume a stock–recruitment
elationship and allow for large estimated recruitment devi-
tions. The majority of the stocks in this study were cate-
ory 1, i.e. stocks with analytical assessments. Estimated re-
ruitment variability in data-rich stocks with recruitment in-
ices is thought to be more robust to recruitment assumptions,
nd so the recruitment variability signal in the data is suffi-
iently strong (Dickey-Collas et al., 2015 ). Additionally, many
f the stocks studied were historically overexploited, which
rovided resolution and contrast on population dynamics at
ow population abundance. The method would be improved
y investigating the inclusion of assessment uncertainty and
ovariance of the recruitment and spawning stock biomass
stimates. There could be two profitable ways forward with
his: (i) for recruitment uncertainty, this could be added to the
easurement-error variance matrix of the Kalman filter such

hat the minimal measurement error variance is no lower than
he estimated recruitment uncertainty; and (ii) bootstrapping
rom the joint posterior distribution of the SSB and recruit-
ent estimates and running the Kalman filter for each boot-

trap replicate. 
The univariate PPM approach might fail to separate the
easurement error and the process variability for some of

he stocks’ time series. This issue is related to a flat likeli-
ood around its maximum in the estimation process (Petris
t al., 2009 ; Tableau et al., 2019 ). Although this might be re-
olved with longer time series, when longer time series are not
vailable, estimating the time-varying parameters collectively
sing a multivariate model could be a solution (Minto et al.,
014 ). Moreover, estimating a common signal-to-noise ratio
educes the number of parameters to estimate and is thought
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to be more robust to shorter time series (Tableau et al., 2019 ).
However, the univariate approach, used in this study, is useful 
for assessing a single stock and getting a population’s view on 

recruitment productivity variability in time. Potentially, know- 
ing the region’s signal-to-noise ratio could be used to inform 

the model and might help in cases where the separation of ob- 
servation error from process error is not robust. More gener- 
ally, understanding how the signal-to-noise ratio varies across 
regions may provide insights into the nature of change more 
globally. 

Implications for management 

Currently, time-invariant stock–recruitment parameters over 
the available time series are typically used to derive reference 
points for management advice (ICES, 2021b ). This approach 

assumes a stationary stock–recruitment relationship and ac- 
counts for average environmental and fishing conditions but 
is not robust if the ecosystem changes (Silvar-Viladomiu et al.,
2022 ). Stock–recruitment parameters are critical in many 
problems in fisheries management because they affect the esti- 
mation of reference points and sustainable harvest rates (Holt 
and Michielsens, 2020 ; Zhang et al., 2021 ). We discovered 

long-term trends and mismatches between time-invariant and 

time-varying maximum productivity and density-dependent 
mortality parameters. We showed temporal patterns in the re- 
cruitment productivity of CSE stocks, which is relevant for 
sustainable advice, especially in the presence of long-term 

trends in productivity levels. For example, stocks that have 
continuously declined in maximum productivity would be im- 
mediate red flags of time-invariant reference points, hence 
their implications for sustainable management should be ex- 
plored. 

Advice frameworks typically consider stock productivity 
regime shifts. When regime shifts are detected, ICES guidelines 
recommend using a data window of spawner and recruit pairs 
or truncating the time series (ICES, 2021b ). Choosing recruit- 
ment windows to derive reference points can be problematic 
because shorter time series lead to disregarding earlier dynam- 
ics and increase uncertainty in reference points (Deurs et al.,
2021 ). Productivity changes are often gradual making it diffi- 
cult to choose a time window (Collie et al., 2021 ). Incorpora- 
tion of ecosystems and climate information into stock assess- 
ments and advice has shown to be necessary but challenging 
(Punt et al., 2014 ; Bentley et al., 2021 ). We argue that in the 
context of ecosystem changes affecting productivity, tracking 
time-varying stock recruitment productivity, estimating dy- 
namic reference points, and measuring current productivity 
levels are crucial for management (Collie et al., 2021 ; Silvar- 
V iladomiu et al. , 2022 ). Tableau et al. ( 2019 ) demonstrated 

that the short-term forecast power for time-varying produc- 
tivity models generally outperformed time-invariant models.
Beyond forecasting, time-varying productivity models can di- 
rectly inform sustainable harvest practices (Collie et al., 2012 ,
2021 ). Stochastic dynamic programming studies have shown 

that the time-invariant harvest control rule based on average 
productivity performed similarly to the dynamic harvest con- 
trol rule except at low productivity (Collie et al., 2021 ). This 
occurs because changes in maximum productivity at low pro- 
ductivity have a stronger effect on the optimal harvest rate 
than changes in the same parameter at high productivity. Con- 
sequently, special care is needed at low productivity levels. 
Implementations of time-varying productivity frameworks 
ave shown the ability to improve on time-invariant man- 
gement (Collie et al., 2012 ), with particular importance for
anagement in the context of climate change (Collie et al.,
021 ). Dynamic methods such as the PPM, capable of track-
ng changes in stock productivity, are outstanding because 
lthough a mechanistic understanding of the processes that 
ffect productivity is important, ultimately, is not needed 

or tactical decision-making now (Minto et al., 2014 ; Col-
ie et al. , 2021 ; Silvar-V iladomiu et al., 2022 ). Further re-
earch is needed to study non-stationary productivity with 

anagement strategy evaluations to test the implementation 

f time-varying recruitment productivity. In view of the evi- 
ence that CSE fish recruitment productivity is changing over 
ime, fisheries science and advice should take it into account,
nd management must respond to be robust to these produc-
ivity changes. 
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